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The collection of extended canonical transformations of first-order contact 
manifolds is studied. This collection is shown to form a group under target-source 
composition and to contain the group of all first prolongations of point transfor- 
mation of the underlying graph space and all isogroups of completely integrable 
horizontal ideals. Extended canonical transformations are compared and con- 
trasted with B/icklund transformations. These results are used to construct an 
extended Hamilton-Jacobi method for systems of nonlinear PDE. The collection 
of all extended canonical transformations is also shown to contain infinitely 
many one-parameter families of transformations, but there is no Lie group 
structure that contains these one-parameter families, in general. Conditions are 
obtained under which a one-parameter family of extended canonical transforma- 
tions will map a solution of the fundamental ideal that characterizes a given 
system of PDE into a one-parameter family of solutions. These results are applied 
to the fl-Gordon equation 0x0t~ =i)(<b) and to the Navier-Stokes equations. 

1. S T A T E M E N T  O F  T H E  P R O B L E M  

W e  wi l l  d e a l  e x c l u s i v e l y  in th is  p a p e r  w i t h  sys tems  o f  pa r t i a l  d i f f e ren t i a l  

e q u a t i o n s  ( P D E )  w i t h  n i n d e p e n d e n t  v a r i a b l e s  a n d  N d e p e n d e n t  v a r i a b l e s  

o f  t he  f o r m  

_ ...d_d k i 
h, xi, O ~ ( x J ) , O x  / - d x  k Wa X , C ~ ( X J ) ,  , l<-a<--r (1.1) 

n a m e l y ,  e q u a t i o n s  o f  b a l a n c e .  T h e  u n d e r l y i n g  g e o m e t r i c  s t ruc tu re  fo r  s u c h  

sys tems  is an  (n  + N +  n N ) - d i m e n s i o n a l  contact manifold K wi th  l oca l  
c o o r d i n a t e s  {x i, q~, y~[1 -< i -  < n, 1 -< a -< N }  a n d  contact 1-forms 

C a = dq ~ - y ~  dx i, 1 < a < N (1.2) 

tDepartment of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015. 

865 

0020-7748/9t/0600-0865506,50/0 ~) 1991 Plenum Publishing Corporation 



866 Edelen and Wang 

that give rise to the closed contact ideal 

~r = I{C",  dC~[1 <- ~ <- N }  (1.3) 

The balance equations (1.1) can then be encoded by the balance n-forms 

B ~ = h ~ ( x  j , q  , y j ) l z -  i " ~ ~ (1.4) ~ d W a (  xj, q , Yi ) A Id'i 

where t~ = dx I ^ "'" ^ dx" is the volume element on the base manifold R", 
and where /z~=0i d/~ are the conjugate basis elements of An-l(• n) that 
satisfy d/z~ = 0, dx j A/zi = 6~/z. These structures combine to give the closed 
f undamenta l  ideal 

5~= I {C~ ,  dC~, B~ll <-a<- N, l <-a<-r} (1.5) 

because dB~ ~- 0 mod c~ and ~ is a closed subideal of  5 ~. The set of  all 
solution maps of  the given system of balance equations has the geometric 
characterization 

S(B~)  = {~: D .  c ~ ~ Ki~*/z  -~ 0, ap*5~ = 0} (1.6) 

The fundamental problem associated with a given system of equations of  
balance is to provide computational algorithms for obtaining elements 
of  S(Bo). 

It has been shown in a previous paper (Edelen, 1990) that there are 
alternative geometric formulations that are effective in providing computa- 
tional algorithms for solution maps. A summary of the pertinent results is 
given in the remainder of this section. The reader is referred to Edelen 
(1990) for the details. 

The constructions start by introducing the 1-forms 

a 

H ~ = d y ~ ' - A i j d x  j, l<-i<-n,  l < - a < - N  (1.7) 

where the A's are elements of A~ that are symmetric in their lower 
indices. These give rise to a horizontal ideal 

Yf[A~] = I { C  ~, H7[1 -< i -  n, 1 -< a <- N} (1.8) 

for each choice of the A's, as the notation indicates. The Cauchy characteris- 
tic subspace gf*[A~] of  the horizontal ideal Yf[~r admits the canonical 
system 

ot a j V~=a~+y iO,+A~ja , ,  l<- i<-n  (1.9) 

as a basis. Here, 

a a a 
Oi O~ = , O~ . . . .  

Ox i' oq ~ oy ;  
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is the natural basis for the Lie algebra T ( K )  of all vector fields on K. It 
therefore follows that 

E A C ~ = 0, E -J H ;  = 0 (1.10) 

A fundamental and very useful property of the vector fields { V~} is that 

df  =- V~(f) dx' mod ~[A~] (1.11) 

for a n y f ~  A~ 
An arbitrary horizontal ideal will not, in general, have annihilating 

maps whose graphs are n-dimensional, while the graph of a solution map 
qb of the fundamental ideal must be n-dimensional and satisfy ~*/z # 0. 
This difficulty is overcome by the requirement that ~[A~] be completely 
integrable. This is the case if and only if 

IV,, E~=O (1.12) 

which is a complicated system of nonlinear, first-order partial differential 
equations that the functions A~ must satisfy. The collection of all completely 
integrable horizontal ideals is denoted by gb(K). When (1.12) are satisfied, 
the system of linear first-order PDE 

V~(g) = 0, l<-i<-n (1.13) 

admits a complete system of N + n N  independent primitive integrals 
{g~(x ~, q", yT)] 1 <- E <- N + nN},  and the space K is foliated locally (i.e., in 
a neighborhood of any point of K) by n- dimensional leaves with the implicit 
representations 

grz(M,q'~,y'~)=k~, I<-E<-N+nN,  {k~}eR N+nN (1.14) 

A parametric representation of the leaf of this foliation that passes through 
a given point Poe K can be obtained by sequential integration of the orbital 
equations for the vector fields { Vii] 1 - i -  n} starting from the point Po- This 
parametric representation gives rise to a map ~:  Dn c R" ~ K such that 

~*/x # 0, qt*C~ =0, ~*H~ =0 (1.15) 

Such a map �9 thus gives ~*~g[A~] = 0 and q~*~ = 0, and hence �9 will be 
a solution map of the fundamental ideal if ~*Bo = 0. Explicit conditions 
are given in Edelen (1990) in order that the conditions ~*B~ = 0 be satisfied. 
When these conditions are met, solution maps of the given system of balance 
equations can be obtained by sequential integration of systems of 
autonomous ordinary differential equations. These solution maps will 
necessarily satisfy the constraints ~*H7 =0, and hence they will only 
constitute a subset of the collection of all solution maps of the fundamental 
ideal. It can be shown, however, that the graph of any solution of the 
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fundamental ideal is the leaf of the foliation of K that is generated by some 
completely integrable horizontal ideal. The solution set of a fundamental 
ideal can thus be exhausted by considering all completely integrable horizon- 
tal ideals. 

2. EXTENDED CANONICAL TRANSFORMATIONS 

The difficulty inherent in this method is that of obtaining functions 
{A~(x k, q~, y~)} that are symmetric in the lower two indices and satisfy the 
conditions [ V~, Vj~ = 0. One way around this problem is to consider transfor- 
mations S : K -> 'K that map the contact manifold K with horizontal ideal 
~[A~]  onto a replica 'K with horizontal ideal '~[ 'A~].  Since mappings 
and exterior differentiation commute, '~[ 'A~] will be completely integrable 
if ~[A~]  is completely integrable. Transformations with these properties 
provide us with the means of computing many collections of 'A 's  that satisfy 
~' V~, 'Vii = 0 from any one collection of A's that satisfy ~ V~, Vj~ = 0. The 
following definition is slightly changed from that given in Section 16 of 
Edelen (1990). The changes have been introduced to provide the basis for 
certain distinctions that will prove to be important in later sections of this 
paper. Let Diff(K, 'K) denote the pseudogroup of diffeomorphisms of an 
open set of K onto an open set in 'K. 

Definition 2.1. A map S: K-> 'K that belongs to Diff(K, 'K) is an 
extended canonical transformation if and only if there exists a completely 
integrable horizontal ideal ~[A~]  of A(K) such that 

S* '~[ 'A~] c Y([A~] (2.1) 

in which case YE[AT;] is the source of S and 'Yg['A~] is the target of S. The 
collection of all extended canonical transformations is denoted by 

ECT= {S ~ Diff(K, 'K)IS* 'W['ATj] c Y6[A~], ~[A~] c ~ (K)}  (2.2) 

The following results have been established in Edelen (1990). Let 
~[A~]  be a completely integrable horizontal ideal of A(K) and let { V/I 1-< 
i-< n} be the canonical basis for ~*[A~]. A transformation S ~ Diff(K, 'K),  
with the presentation 

'xi=s~(xJ, qt3, y~), 'q~=s"(xJ, qt3, yf), 'yT=sT(xJ, q~,y~) (2.3) 

is an extended canonical transformation with source Ye[A~] if and only if 

det(V~(sJ)) ~ 0 (2.4) 

Vj(s ~) = s~ V~(s k) (2.5) 
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in which case 'A~ are determined by 

* A~ = S* '  A O" (2.6) 

*A~m Vj(s m ) Vi(s k) = V:V,.(s ~ ) - s~ VjVi(s k ) (2.7) 

and 'YC['A~] is completely integrable. 
Satisfaction of the conditions (2.4) implies that there exist functions 

S~ such that 

Sj V~( s k) = S~ V~( s') = 6~ (2.8) 

Accordingly, (2.5) gives the explicit evaluations 

s;  = S~' Vm(s ~) (2.9) 

Since S ~ D i f f ( K , ' K ) ,  the inverse mapping S -1 exists. The relations 
(2.6) and (2.7) can therefore be used to obtain the explicit evaluations 

t o~ - - 1 "  m r A o = S  (S~ S,{VmVr(s ) -S~Vk(s")VmVr(s ' )} )  (2.10) 

These explicit evaluations show that any extended canonical transformation 
is determined by specifying the n + N  functions {s i, s~]l -< i -  n, 1 -< a -< N} 
of  the arguments {M, q~, y~} that satisfy the conditions (2.4) and are such 
that S ~ Diff(K, 'K).  This latter requirement is tantamount to the condition 

O(s', s ~, S 7 Vm(s")) r 0 (2.11) 
O(x k, qt~, y~) 

on the Jacobian of the transformation. Functions {s i, s ~} with these 
properties are referred to as generating functions of an extended canonical 
transformation. 

If S is an extended canonical transformation with source Yg[A~] ~ � 9  
and generating functions {s ~, s~}, then the canonical basis vectors for 

. ~ , ~ . r , a ~ ]  Yg [Au] and ~ ~ ._u~ are related by 

S ,  V~ = {( V~(sk))o S -1} 'Vk (2.12) 

It therefore follows that 

S . ~ * [ a ~ ]  = '~*VA~]~. ~ --,J~ (2.13) 

and hence that the systems {gz} and {'g:~} of complete, independent,  first 
integrals of  the systems V~(g)= 0 and ' V f g ) =  0 are related by 

'g~ = g~ ~ S -1 (2.14) 

Thus, an extended canonical transformation with source g [A~]  ~ ( K )  
will carry leaves of the foliation of K generated by ~[A~]  into leaves of  
the foliation of 'K generated by the target '~[ 'A~] .  
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The presentation relations for an extended canonical transformation 
S, in terms of the generating functions {s ~, s~}, are 

,xi= si(x i, q~, yf) ,  ,q~ = s~(x j, qt~, y~) 

If  

= o ,  = 0 ( 2 . 1 5 )  

(i.e., the generating functions do not depend on the y's), then 

E({sJ, s~})=~({sJ, s~}), Z~=O,+yTO~ (2.16) 

and (2.5) becomes 

Z~(s~> = s~Zj(s k) (2.17) 

These relations show that the resulting extended canonical transformation 
is a first prolongation (Pommaret, 1978; Olver, 1986) orfirst group extension 
(Ovsiannikov, 1982; Ibragimov, 1985) of a point transformation on the 
(n + N)-dimensional  graph space G with local coordinates {x i, q~[1 - i -< n, 
1 - a -< N}. Now, (2.17) shows that the functions {sT} are independent of 
the choice of the functions {A~} and hence such extended canonical transfor- 
mations are universal with respect to the choice of source Yg[A~] ~ �9  
This establishes the following result. 

Theorem 2.1. Every first prolongation (first group extension) of a point 
transformation on graph space such that det(Z~(sJ))r 0 is an extended 
canonical transformation that is universal with respect to the choice of the 
source horizontal ideal N[A~] c g)(K). Conversely, an extended canonical 
transformation is a first prolongation of a point transformation on graph 
space if and only if the generating functions satisfy the conditions O~(s ~) = O, 
o <s ~ = o .  

If  any one of the quantities {~} = {O~(s~), O~(s~)} is nonzero, then the 
extended canonical transformation S with generating functions {s ~, s ~} is 
not a first prolongation of a point transformation of graph space. An 
examination of the presentation (2.5) for S shows that at least one of the 
new independent variables {'x j} or one of the new dependent variables {'q~} 
will depend on the y's; that is, the image in 'K of a point P in graph space 
will depend on the point P and on the derivative information contained in 
the values of the y's. This situation is similar in some respects to what 
occurs with B~icklund transformations (Biicklund, 1876; Rogers and Shad- 
wick, 1982). There are significant differences, however. A B/icklund transfor- 
mation takes any solution map of the source fundamental ideal into a 
solution map of the target fundamental ideal, while an extended canonical 
transformation will only take a solution map of the source fundamental 
ideal that satisfies the constraints ~ * H 7  =0  into a solution map of the 
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target fundamental  ideal that satisfies the constraints 'xtr*'H7 = 0. Further, 
if  any one of  the quantities {~} is not zero, then 

E(ls', s~ # zi({s;, s~}) 
for at least one choice of  the indices. Equations (2.5) that determine the 
presentation functions {sT} then show that this determination will depend 
on the evaluations of  the functions {A~}, that is, the presentation functions 
{s~'} will depend on the choice of  the source ~ [A~] .  In this event, a given 
choice of  the generating functions {si, s ~ } will generate a different extended 
canonical t ransformation for each choice of  the source N[A~] ~ g)(K).  This 
explicit dependence on the source horizontal ideal, for extended canonical 
t ransformations that are not first prolongations, is what distinguishes exten- 
ded canonical t ransformations from most collections of  transformations 
studied in the literature. In particular, it is evident that prolongation methods 
in the attendant jet bundle formulations cannot be used because they would 
restrict us to the subset o f  extended canonical transformations that are first 
prolongations. 

3. E X A M P L E S  W I T H  n = 2  

In the interests of  simplicity, we restrict the considerations to cases 
where n = 2 and N = 1. This allows us to use the simplified system of  local 
coordinates {x, t, q, y~, Y,} for K. We start with 

' x = x ,  ' t=  t, 

and a completely integrable source 
canonical system is 

Vi = Oi + yiOq h- kijo j, 

'q = q+ a e'(yx) 2 (3.1) 

horizontal ideal whose associated 

ki: = kji, dk o = 0 (3.2) 

that is, A~ = ko, where the k's  are constants. The relations (2.9) then give 

' yx=yx+2ayxkxxe  `, ' y t=ae t ( yx )2+y ,+2akx t yxe  ' (3.3) 

and hence (3.1) and (3.3) show that this t ransformation belongs to 
Diff(K, 'K) .  The presence of  the k 's  in the relations (3.3) explicitly shows 
the dependence of the resulting extended canonical t ransformation on the 
choice of  the source A's because A~ = k w. The 'A's  are then determined by 
(2.10), and we obtain 

t 1 A ~  = (1 +2akx.,, et)k,~, 

'Yx t 1 - -  Axt - 2ak= e t 
1 +2akxx e t (3.4) 

a e~('y~) 2 

' A .  = (1 + 2ak~x et) 2 

~-(l+2akx,,e')k,,,  

4ak~, e' ' 
2ak,,,, y~'e + 2a(kx')2 e' 1 + 
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A direct calculation easily shows that ' ~ [ ' A  1] is completely integrable. 
The vector field 

U = -2tO~ + xqOq + (q + xy~)O ~ + (2yx + xyt)O t (3.5) 

on K generates a local one-parameter Lie group of prolongations of a 
one-parameter local Lie group of  point transformations of  the graph space 
G with local coordinates {x, t, q}. It therefore generates a one-parameter 
group of extended canonical transformations 

S u ( r ) U x  = x - 2 t 7 ,  't = t, 'q = q exp(x7 - tr 2) 

'y~ = (yx + qr exp(x7 - t7 2) (3.6) 

'y, = (y, + 2 y j +  q7 2) exp(x7 - t7 2) 

with parameter 7 e R for every choice of the source horizontal ideal (see 
Theorem 2.1). The simplest source with A,~ = 0 is therefore used to compute 
a one-parameter family of  completely integrable targets ' , 1 ~ [  Au] by using 
(2.10). This gives the evaluations 

t 1 t p 1 
Axx = 7 Yx, Axt  = 7('yt - 7 'yx + r 'q) 

(3.7) 

'A~, = z2(2 ' y , -  47'yx +372 'q) 

for each value of the parameter ~- e •. A direct calculation verifies that the 
canonical basis {' Vx, 'V t} for '~*['A,~] satisfies [['Vx, 'Vt]] = 0. Although the 
collection S u ( r )  forms a one-parameter group of extended canonical trans- 
formations, these results show that the induced action of  S u ( 7 )  on S~(K) 
is not that of  a one-parameter Lie group; simply note that 

d ( 'A lx )  = 'Yx + 7 d  ('Yx) = 'Yx + 7('q + 'x 'yx)  

This fact will have important ramifications throughout the remainder of  
these discussions. 

These results give us procedures for constructing systems of  partial 
differential equations for which we can construct large families of solutions. 
For the purposes of  this discussion, we will keep n = 2 and the independent 
variables {x, t}, but relax the requirement that N = 1. Let {'h"[1-< a-< N} 
be a system of  N elements of  A~ In order to make matters specific, 
we consider the balance 2-forms 

'B  ~ = 'h ~ d ' x  ^ d ' t  - d ' y7  A d ' t ,  1 <- a <- N (3.8) 
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that characterize the system of  PDE (coupled inhomogeneous wave 
equations in characteristic coordinates) 

- h ~ 'x, 't, ~b ~ , - ~ /  ( 3 . 9 )  
O'x O't O'X 

Previously established results show that 

'B  ~ =- 'F  ~ d ' x  ^ d '  t rood 'Y(['A~] (3.10) 

with 

'F"  = 'h a - Vx( y, ) . . . .  ' ' ~ = h - A x ,  (3.11) 

Now (see Edelen, 1990), 'Yg['A~] is special [i.e., belongs to g)s( 'K)] if the 
'A's are generated in the manner specified above for some Yg[A~] ~ g)(K) 
and the functions ' h~ ( ' x  j, ,qt~, ,y~) have the determinations 

'h a = 'A~, (3.12) 

In this event, every leaf of the foliation generated by 'Yf['A~] is the graph 
of a solution map of  the given system of PDE. As an example of  this 
construction, let us set N = 1 and use the 'A's that are given by (3.7). Use 
of  (3.12) shows that we can obtain solutions of the PDE (3.9) when 'h 1 is 
given by 

'h I = 7 ( ' y t -  7 'Yx + 7 2 'q) (3.13) 

that is, 

O'x O't \ 0  t 0 x / 

for any given numerical value of the parameter z. Since this process started 
with the source horizontal ideal such that A~ = 0, a complete set of primitive 
integrals of the orbital equations of { Vx, V,} is 

g = q - x y x - t y t ,  g x = y x ,  g t = y t  (3.15) 

Since any extended canonical transformation maps primitive integrals onto 
primitive integrals, and the inverse of the transformation (3.6) is given by 

x = ' x + 2 ' t 7 ,  t = ' t ,  q = ' q e x p ( - ' x r - ' t r  2) 

Yx = (' Yx - ' q T )  e x p ( - ' x 7 -  ' tr  ~) (3.16) 

y, = ('y, - 2' y~ z + ' q7 2) e x p ( - ' x z  - ' tz 2) 
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a complete system of primitive integrals of  the canonical system {'V~, 'V~} 
is given by 

'g = 'q e x p ( - ' x r  - ' t ' r  2) - ( ' x  d- 2 ' t r ) '  gx - ' t '  g, 

'g~ = ('Yx - ' q r )  e x p ( - ' x r -  ' t r  2) (3.17) 

' g t  = ( '  Y t  - -  2' y x r +  ' q ' r  2) e x p ( - ' x r  - ' t ' r  2) 

Solutions of  (3.14) are therefore given by 

' g  = k l ,  'gx ----" k2 ,  'g, = k 3 (3.18) 

for every choice of the constants {kl, k2, k3} because ' ~ [ ' A  1] ~ ~s( 'K1) i.e., 
we have 

, F l = , h  ~ , l - A ~ ,  = 0 

If we use the extended canonical transformation given by (3.1)-(3.4) 
with k~, = O, then the balance 2-form 

' B1 = 'h~ 'tx - d ' y ,  ^ 'l,t, (3.19) 

encodes the PDE 

02~b = 'hi (3.20) 
O ' t  O ' t  

and the corresponding 'F1 is given by 

'F  1 = 'hi - 'A~, (3.21) 

Thus, if ' h  i has the evaluation 

a e  t 

'hi - (1 +2akxx  e ' )  2 (,yx)2 (3.22) 

then (3.4) and (3.21) show that 'F1 = 0, and hence ' ~ [ 'A  1] belongs to ~s ( 'K) .  
Every leaf of  the foliation generated by ' ~ [ ' A  1] will thus be a solution of 
the PDE 

02q5 _ a e '  (Odp~ 2 (3.23) 
O'tO't ( l + 2 a k ~ e ' ) 2 \ O ' x /  

The easiest way of obtaining the leaves of the foliation is to invert the 
extended canonical transformation and use the results to express the primi- 
tive integrals {g, gx, g,} of  {V~, V,} to obtain the primitive integrals of 
{' Vx, 'V,}. If we denote this inverse transformation by S -~, then 

'g = g ~ S-l ,  'g~ = gx ~ S - I ,  'g, = & o S -l (3.24) 
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The solutions are then given in implicit form by 

'g = !q, 'g~ = k2, 'g, = k3 

for various choices of the constants {k~, k2, k3}. 

875 

(3.25) 

4. G R O U P  PROPERTIES 

A first-order contact manifold K admits the Cartesian product 
decomposition K = G • R "N, where G is the associated graph space with 
local coordinates {x ~, q~]l -< i -  < n, 1 -< a -< N}. Let Diff(G, 'G) denote the 
group of local diffeomorphisms from the graph space G to the graph space 
'G with local coordinates {'x ~, 'q~}. The Lie algebra of Diff(G, 'G) is T(G), 
and T(G) lifts to the Lie subalgebra pr(1)( T(G)) of T(K) of first prolonga- 
tions. Accordingly, Diff(G, 'G) lifts to the Lie pseudogroup PR{1)(G, 'G) = 
exp{pr(1)( T(G))} of all locally regular prolongations of regular point trans- 
formations on graph space [see Pommaret (1978) for a discussion of why 
only a pseudogroup structure is obtained]. The presentation relations for 
elements of pR(1)(G, 'G) have the form (Olver, 1986; Pommaret, 1978) 

,x ~ = pi(xj, qr ,q~ = p~(xj, qr ,yO/= pT(xj, q~, y~) (4.1) 

where the functions {PT} are determined by 

Zi(P~)= P~ Z~=Oi + y~[O~ (4.2) 

The regularity condition is contained in the requirement 

det(Zf{PJ)) ~ 0 (4.3) 

Noting that V~ ({ pi, p~ }) = Z~({P~, P ~ }), where { V~]I -< i -< n } is the canonical 
basis for any N[A~] ~ S)(K), Theorem 2.1 shows that any element of the 
Lie pseudogroup PR(~)(G, 'G) belongs to ECT for every source ~[A~] 
g)(K). We have therefore established the following result. 

Theorem 4.1. The Lie pseudogroup pR(1)(G, 'G) of all locally regular 
first prolongations of point transformations on graph space is properly 
contained in ECT, and PR(~)(G, 'G) is universal with respect to the choice 
of the source N[A~] c ~ (K) .  

This theorem is the group-theoretic analog of Theorem 2.1. Since the 
pseudogroup of prolongations is properly contained in ECT, it follows that 
the restriction to prolongations would eliminate a large part of ECT. 

Let J~ be a fundamental ideal of A(K) that characterizes a given system 
of PDE, let iso[J ~] be the Lie algebra of isovectors of the fundamental ideal 
J~, and let ISO[J ~] = exp{iso[~C]c~pr(1)(r(G))} be the Lie pseudogroup 
of symmetry transformations of the fundamental ideal. Since we have 
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I S O [ ~ ] c p R ( 1 ) ( G , ' G ) ,  Theorem 4.1 shows that ISO[5~] is a Lie 
pseudogroup that is contained in ECT and that ISO[5~] is universal with 
respect to the choice of the source horizontal ideal. Any solution map 
of the fundamental ideal can be embedded in the Lie pseudogroup 
ISO[or o �9 of  solution maps of  the fundamental ideal. On the other hand, 
it was shown in Edelen (1990) that any smooth solution map �9 of  the 
fundamental ideal is the leaf map of a leaf of  the foliation generated by 
some completely integrable horizontal ideal ~[A~].  Let J be any element 
of  ISO[~];  then J o �9 is a solution map of  the fundamental ideal. Theorem 
4.1 then shows that J o �9 is a leaf map &the  completely integrable horizontal 
ideal '~ [ 'A~]  that is the target of the extended canonical transformation J 
with source ~[A~].  If we were to start with a different solution map @ of 
the fundamental ideal that is a leaf map of the completely integrable 
horizontal ideal "~ ~[Au] ,  then J o dp is a solution map of the fundamental 
ideal that is also a leaf map of  the foliation generated by 'W['A~]. Here, 
W[ A~] is the target of the extended canonical transformation J with source 
W[A~]. The reason why these constructions work is the fact that any 
prolongation of a point transformation of graph space is an extended 
canonical transformation that is universal with respect to the choice of the 
source horizontal ideal. 

The collection ISO[A~] c T(K) is the Lie algebra of  isovectors of  the 
completely integrable horizontal ideal ~[A~]  (see Edelen, 1990). It thus 
follows that every transformation in the Lie pseudogroup ISO[A~]=  
exp{ISO[A~]} maps ~ [A~]  c ~ ( K )  into itself. The definition of ECT shows 
that ISO[A~] is a Lie pseudogroup of elements of  ECT with source and 
target W[A~]. This observation establishes the following result. 

Theorem 4.2. The Lie pseudogroup ISO[A~] is contained in ECT for 
every ~ [ A ~ ] c ~ ( K ) ,  and all elements of ISO[A~] have W[A~] as both 
source and target. 

These results suggest that an investigation of possible group properties 
of ECT will be useful. Let $1 be an extended canonical transformation with 
source Y([A~] and target '~[ 'A~].  We therefore have 

,xi= si(x j, q/3, y~), ,q~ = s , (x  j, q~, y~) 

with 

'y~ = si~ (x,J qr y~) 
(4.4) 

Vj(s ~ ) = s~' Vj(s') (4.5) 

Let $2 be an extended canonical transformation with source '~[ 'A~]  and 
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target "~["A~]. This gives us 

"x i = ' s ' ( ' x  j, ' qr 'yf) ,  

with 

,,q~ = ,s~(,x J, ,qt~, ,yf), 

,,y~' = 's? ('x/, 'q~, 'y f )  

(4.6) 

' Vj('s ~ ) = 's~' ' Vj('s i) (4.7) 

We can then compose $2 with S1 to obtain the transformation $21 = $2 ~ $1 
with source Yg[A~] and target "Yg["A~], because the target of S1 coincides 
with the source of $2. We refer to this form of composition of elements of 
ECT as target-source composition. The group property of ECT will then 
follow if we can show that 821 is an extended canonical transformation. It 
is obvious from the presentation relations for $1 and $2 given above that 
the generating functions for the transformation $21 will be the compositions 
of the generating functions for $2 with those for $1; i.e., that 

"s i=  ' s ' ( s  J, s t~, s~),  "s ~ = ' s~(s  j, s ~, s~) (4.8) 

Theorem 2.1 then shows that $21 is an extended canonical transformation 
if and only if 

Vk(' S c~ (S j, S [3, Sff))= ttS~ Vk(t Si(S j, S ~3, S jr')) (4.9) 

because $21 has W[A~] as source. However, (2.12) gives the relations 

(S1) , V/= {(V/(sk}) o S11} 'Vk (4.10) 

which serve to show that (4.5), (4.7), and (4.9) are consistent. We have 
therefore established the following result. 

Theorem 4.3. The collection ECT forms a group under target-source 
composition. 

The reader is warned that ECT does not form a Lie pseudogroup, 
because the composition law is target-source composition rather than un- 
restricted composition. The group ECT does contain the infinite- 
dimensional Lie pseudogroup PR~(G, 'G) because P R ~ ( G , ' G )  is a Lie 
pseudogroup that is universal with respect to choice of source. It also 
contains the infinite-dimensional Lie pseudogroup ISO[A~] because 
ISO[A~] is a Lie pseudogroup for which the source and target always 
coincide. 

Let Yg[0] denote the completely integrable horizontal ideal that obtains 
for the choice A~ = 0; that is, when V~ = Zi. This is certianly the simplest 
completely integrable horizontal ideal that can be written down. The follow- 
ing result shows that any completely integrable horizontal ideal can be 
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constructed from ~[0] by the action of appropriate extended canonical 
transformations. 

Theorem 4.4. There exists an element of ECT with source ~[A~] and 
target '~[0] for any ~[ATj] ~ S)(K), provided the base of K is a sufficiently 
small open subset of R n, and this transformation leaves the base manifold 
invariant. Hence, S)('K) is the orbit of ~[0] under the action of ECT, and 
this action is multiply transitive. 

Proof. Let ~[A~] be a generic element of ~ ( K )  and let {g~, gT[1 <- a <- 
N, 1-< i -  n} be a complete, independent system of primitive integrals of 
the system { V~(g) = 0[1 -- i -< n}, where { V~} is the canonical basis for ~*[A~]. 
Consider the transformation S with source ~[ATj] and generating functions 

s i i s ~ g ~ + ( x  i _  i = x ,  = xo)gi  (4.11) 

Since V~({g ~, gT}) = 0 and V~(J) = 3~, the presentation of S is 
i i ~ ,y~ 'x' =x  i, 'q~ = g ~ + ( x  -xo)g i ,  =g7 (4.12) 

and hence S leaves the base manifold Dn invariant. The transformation S 
will thus be an extended canonical transformation provided S c Diff(K, 'K), 
that is, provided 

O('x i, 'q'~, 'y~') O(g '~ ..t-(X k --xg)gC~, g~) 
- r  

O(x j, qt3, y f )  O(qr y~)  

The independence of the primitive integrals {g~, g~} then shows that this 
condition will be satisfied for all values of {x k} such that ]]xk--Xok[] is 
SUfficiently small. Hence, S is an extended canonical transformation pro- 
vided the base manifold of K is a sufficiently small open subset of R n. It 
then follows from (2.7) that we have *A~ = 0, and hence 'A~ = 0. The target 
of S is therefore '~g[0]. Reversing the roles of source and target, and using 
the group property of ECT, it follows that there exists an extended canonical 
transformation with source ~[0] and target ')~['A~], for each '~'['A~] 
S~('K). This shows that ~ ( 'K)  is the orbit of ~~ under the action of ECT. 
That this orbit is multiply transitive follows from the group property of 
ECT and the fact that ECT contains the Lie pseudogroups ISO[A~ = 0] 
and INO['A~] for every '~['A~] ~g)('K). [] 

A transformation S of the group ECT takes the source ideal ~t'[A~] 
g)(K) into the target ideal '2(['A~] c Q('K). If we then drop the primes on 
the names of the quantities in 'K, the space 'K becomes indistinguishable 
from the space K, and the target ideal '~['A~] becomes a new ideal of 
A(K) that belongs to ~(K). We refer to this action of ECT on ~)(K) as 
pulled back  action. Theorem 4.4 can then be used to show that the collection 
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~(  K)  of  all completely integrable horizontal ideals is the orbit o f  ~[0 ]  under 
the pulled back action of  the group of  extended canonical transformations. A 
complete characterization and computat ionally feasible construction of 
~)(K) has thus been obtained. The reader is warned, however, that the pull 
back action of the group ECT on S~(K) is not a Lie group action. This is 
explicitly shown in the second example given in Section 3, where the 
dements  of  ECT constitute a one-parameter  Lie subgroup of  pRI (G,  'G) .  

attention on 
An extended 
presentation 

5, A N  E X T E N D E D  H A M I L T O N - J A C O B I  M E T H O D  

The results established in Theorem 4.4 suggest that we concentrate our 
transformations that leave the base manifold invariant. 
canonical t ransformation S with these properties has the 

where 

S l ' x i = s i = x  i, 'q'*=s'~(xJ, q~,yf) 
, y~ = Vi(s,~(xj, q;3, yf)} 

(5.1) 

(5.2) 

V~=O,+yiO,~+A~(x k q ~ ,yk)O,~,r j 1 <- i <- n (5.3) 

is the canonical basis for N*[A~] that is the Cauchy characteristic module 
of  the source horizontal ideal ~ [A~] .  The induced transformations of  the 
A's  are given by 

*A~ = S *'A~ = V~Vj(s~(x k, qt3, YCk)) (5.4) 

and the fact that S ~ Diff(K, ' K )  gives the local invertibility condition 

o(sL V,(s~)) 
s o  (5.5) 

O(qV, y~) 

Suppose that we drop the local invertibility condition (5.5). In this 
event, the range of S in ' K  will be at least of  dimension n in view of  the 
requirements 'x i = x i. In fact, even if we were to take s" = 0 for all values 
of  the index a, S would map  K onto the n-dimensional manifold in 'K  
given by 'q" -= 0, 'y~' = 0. Hence, if �9 is a regular map from an open set J ,  
of  R" into K, then S o �9 will be a map from J,  into ' K  with an n-dimensional 
range such that (S o ~)* ' /x  # 0. The map S o �9 could thus serve as a solution 
map of the balance ideal of  A( 'K)  that characterizes a given system of  PDE 
on ' g .  

Let 

'B.='ha('xJ,'qt3,'y~)'l.~-d'Wi.('xJ,'qt3,'y~)^'tx,, l<-a<-r (5.6) 
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be the balance n-forms that characterize a given system of  PDE on 'K. I f  
S: K ~ ' K  is a map with presentation (5.1), (5.2) that does not necessarily 
satisfy the condition (5.5), then 

S * ' B a = ( ' h a o S ) l x - d ( ' W ~ o S ) ^ t z ~ ,  l<-a<-r (5.7) 

is a well-defined system of  r n-forms on K. Accordingly, if  �9 : J ,  ~ K is a 
regular map,  then (S o ~)* 'B~ are well-defined n-forms on J, .  Thus, if 
(S o ~ )* 'Ba  = 0, 1 -< a -< r, then S o �9 will solve the balance ideal 

' ~ , [ ' A ~ ]  = I{ 'C ~, 'H'~, 'Ba} (5.8) 

(S o ~)* 'Y([ 'A~] =0.  However,  the construction of S of  A( 'K)  provided 
guarantees that 

S * ' ~ [ ' A ~ ]  c ~ [ A ~ ]  

and hence (S o ~ )* 'W[ 'A~]  = 0 if ~*W[A~]  = 0. Thus, if �9 is any solution 
map of  the source horizontal ideal ~ [A~] ,  then S o �9 will solve the balance 
ideal ' ~ [ ' A ~ ]  provided S can be chosen so that (S o ~ )* 'Ba  = 0. 

Definition 5.1. A map  

HJ['x ~= x ~, 'q= = J ~ ( x  j, qO, r~), 'y~ = V~(J ~) (5.9) 

of  K to ' K  with source horizontal ideal ~ [ A ~ ]  is an extended Hamilton- 
Jacobi map for a system of PDE that is characterized by the balance n-forms 

'Ba = 'ha 'tz - d '  W'a A '/Zi (5.10) 

on 'K  if and only if N generating functions J~ ~ A~ can be found such 
that 

HJ* 'Ba  --- 0 mod ~ [A~] ,  l<-a<-r (5.11) 

Theorem 5.1. Let ~ [ A ~ ]  be a completely integrable horizontal ideal 
of  A(K) .  I f  N functions J~ ~ A~ can be found that satisfy the system 
of  partial differential equations 

/~ = 'ha o H J -  V,-('Wi o nJ )  = 0, l<-a<-r (5.12) 

where H J: K ~ ' K  has the presentation (5.9), then HJ is a Hami l ton-Jacobi  
map for the system of  PDE with balance n-forms (5.10) and HJ o ~ is a 
solving map of the balance ideal 

' ~  ['A~] = I{ 'C '~, 'H'~, 'Ba} (5.13) 

for any leaf map �9 of  the foliation of K that is generated by ~ [A~] .  

Proof The congruence 

'So = 'ha 'tz - d' W'~ A ' /z, ==-'Fo '/z mod ' ~ [ ' A ~ ]  (5.14) 
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with 
i t ! t i F a -  h a -  V~(Wa) 

was established in Section 6 of Edelen (1990). Now, V~('x J) = 6~ for the 
map HJ with presentation (5.9), and hence HJ ,  V~='V~ by (2.12). Since 
HJ*HJ,  V~ = V~ and H J * ' ~ [ ' A ~ ] c  ~[A~],  we have 

HJ *'B,~ --- f ,  dz mod g [ A ~ ]  (5.15) 

with 

fo = 'h~ H J -  V,('W~ o nJ)  (5.16) 

If  the functions J~ can be chosen such that (5.12) are satisfied, then f~ = 0 
and (5.15) show that we will have HJ *'B~-=0 mod YC[A~]. Definition 5.1 
thus shows that the map HJ is an extended Hamilton-Jacobi map for the 
system of PDE characterized by the balance n-forms (5.10). If  �9 is a leaf 
map of the foliation of K that is generated by Yg[A~], then ~*YC[A~] = 0 
and (5.15) shows that ( H J o ~ ) * ' B a = 0 .  Since we necessarily have 
HJ *'~F'A~] c ~ v L . - o j  YC[A~], (5.13) shows that (HJo ~ ) * ' ~ F ' A  ~] - - ~ - - o ~  = 0 and hence 
HJ o xlt is a solving map of the balance ideal for every leaf map �9 of the 
horizontal ideal ~[A~].  m 

A Hamilton-Jacobi map pulls the balance n-forms for the system of 
PDE on 'K back to a system of n-forms on K that are trivial rood )C[A~] 
(i.e., 0-valued mod )C[A~]), and hence they become trivially solvable by all 
leaf maps of the foliation of K that is generated by )~[A~]. Since exactly 
the same circumstances occur in the classical Hamilton-Jacobi theory for 
Hamiltonian systems of ODE (i.e., the Hamiltonian equations pull back to 
equations that are trivially integrable), the name "Hamilton-Jacobi" maps 
seems appropriate. 

This method can be applied to any system of PDE for any choice of 
the source horizontal ideal )~[A~]. Since the V's depend on the choice of 
the A's, the system of equations (5.12) that the J 's  must satisfy will depend 
on the choice of the A's. Clearly, some choices of the A's are better than 
others, both from the standpoint of the ease of solving the system (5.12) 
and from the standpoint of the ease of solving for the leaf maps. One choice 
in particular suggests itself; namely A~ = 0, for in this case V~ = Z~ and the 
leaf maps are given by 

�9 i q~ a o~ j a ar  
x ~ = x ~ ) + u ,  = qo + y o j U ,  Yi  =Yo~ (5.17) 

Solutions of the given system of PDE, which admit the functions 
J~ (# ,  q~, y~) as generating functions of a Hamilton-Jacobi map, are thus 
given by 

' q'~ = J'~ ( XJo + w i, q~o + Y~ojU j, Y~oj) (5.18) 
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As an example,  let us look at the O-Gordon  equation, where we use 
the coordinate cover {x, t, q, yx, y,} for K. The balance 2-form for this 
equation on ' K  is given by 

'B ,  = O ( '  q) ' tz  - d ' yx  ^ ' tz, (5.19) 

A Hamil ton-Jacobi  map  for this problem must have the presentation 

' x  = x,  ' t  = t, 'q = J ( x ,  t, q, yx,  y , )  
(5.20) 

' Yx = V , ( J ) ,  ' y, = V,(J)  

- -  1 Let us choose A~x = A~, - A, ,  = 0, so that  V~ = Z~ = 0~ +yiOq. I t  then fo l l ows  
directly form (5.19) and (5.12) that the function J must satisfy the second- 
order PDE 

Z : Z , ( J )  = O ( J )  (5.21) 

in order for J ( x ,  t, q, Yx, Y,) to be a generating function of a Hami l ton-Jacobi  
map for this problem. 

When (5.21) is written out in fully expanded form, we have 

OxOtJ + y~O,OqJ + y,OxOqJ + y~y, OqOqJ = O(J )  (5.22) 

There are two cases in which this equation can be readily solved. In the 
first case, J is a function of  the variables {x, t} only, in which case we obtain 
O~O,J = O(J ) ;  that is, the O-Gordon  equation itself. I f  ~b(x, t) is any Smooth 
solution of  the I~-Gordon equation, then J = ~b(x, t) will be a generating 
function for a Hami l ton-Jacobi  map. This map  has the presentation 

HJl 'x = x , ' t = t ,  ' q = 4 ) ( x , t ) ,  'y~=O~qb, ' y , = O , ~  (5.23) 

and hence HJ maps all of  K onto the two-dimensional surface in ' K  that 
is defined by (5.23). Composi t ion of HJ with any leaf map of ~[A,~ = 0] 
gives the same two-dimensional  surface in ' K  which is a solution of the 
l L G o r d o n  equation. It is of  interest to note in this context that we also 
obtain the evaluations 

, ~ _ v, v j ( j ) = a % ( x ,  t) 
A ~ j -  Ox i Ox i 

and hence we have 

t l 0 2 ~ ( t X '  i t )  

A U = O,x i O,x j 

which are known to be an appropriate  choice for the 'A's  to obtain a solution 
of the problem as a leaf of  a foliation of 'K. 



Transformations for Nonlinear Field Equations 8 8 3  

In the second case, we look for solutions of  (5.22) that are independent 
of  x and t; we set J = ~(q, Yx, Yt). Equation (5.22) then reduces to the ODE 

d2ff 
yxyt~q2 = 12(~ " ) (5.24) 

because the dependence on Yx and Yt is parametric. Equation (5.24) shows 
that if, and hence J, will depend explicitly on the arguments {rx, r,}, and 
hence the Hamilton-Jacobi  map obtained in this case is not the prolongation 
of  a map between graph spaces. This equation admits the first integral 

/ dCV fo: yxytk-~q } = k(y~, ut )+2  f~(v) dv (5.25) 

and hence ~'(q, yx, Yt) can be obtained by an additional quadrature for 
reasonable choices of the function IL This solution will generate a Hamil ton-  
Jacobi map HJ with the presentation 

o~ a~ 
' x = x ,  ' t= t ,  ' q=~(q ,  Yx, Y,), 'Yx=Yx~q,  ' y ,=Yt~q (5.26) 

It is easily checked that this map has rank greater than or equal to 4 at all 
points where dr ~ O, and hence HJ will map K onto a subset of 'K of 
dimension at least 4. These equations show, however, that 'yx/'y, = Y x / Y ,  
and hence *A 1 = V~Vj('q) and (5.24) yield 

* 1 t r t t 1 t 1 - -  r p r a ~  = ~q(q) y~ /y , ,  A~, = f~('q), A ,  - f~(q)  y , / y x  (5.27) 

These, however, are exactly the forms of the A's that were found to work 
for the O-Gordon equation in the analysis given in Edelen (1990). The 
theory tells us that we need only compose HJ with a leaf map �9 generated 
by the horizontal ideal Yg[A~ = 0] in order to obtain a solving map of  the 
balance ideal. Since x = Xo+ u 1, t = to+ u 2, q = qo+YoxU ~ +yo,u 2, Yx = Yox, 
Y, = Yo, is the form taken by any such leaf map of  Y~[A,~ = 0], we obtain the 
solutions 

'x = u ~, 't = u 2, 'q = r 1 +Yot u2, Yox, Yo,) (5.28) 

The extended Hamilton-Jacobi  method replaces a given system of  PDE 
by a new system, namely (5.12), which will often be worse than the given 
system with which we started. There are cases, as also happens with the 
classical Hamilton-Jacobi  theory, for which the new system (5.12) will be 
simpler or easier to solve than the original system. In these cases, the 
extended Hamilton-Jacobi  method can often provide exact solutions to 
otherwise very complicated problems. The exhaustive property of this exten- 
ded Hamilton-Jacobi method is established by the following result. 
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Theorem 5.2. Every smooth (C 3) solution of agiven system of equations 
of balance can be obtained by an extended Hamilton-Jacobi map. 

Proof Let q " =  r  k) be a smooth solution of a given system of 
equations of balance 

na = hal.~ - dWla A tZi (5.29) 

and consider the transformation 

Sl'x' = x', 'q~ = r (Xk), 'y'[ = Oir k) (5.30) 

An evaluation of Fa by use of (5.12) gives 

- - -  g (xk), 0jr ~) (5.31) d Wa(x~, r F~ = h~(x j, r Ojr '~) dx' 

and h e n c e / 3  =0,  1 -< a -< r, because q~ = r  k) defines a solution of the 
balance system (5.47) by hypothesis. The transformation S is therefore an 
extended Hamilton-Jacobi map with J~ = r  k) by Theorem 5.1. It is of 
interest to note that we also have 

~162 (5.32) 
'A~ = o,xi a,xj 

for the Hamilton-Jacobi map S, and hence this theorem is the natural  
complement of Theorem 5.4 of Edelen (1990). �9 

6. O N E - P A R A M E T E R  FAMILIES OF T R A N S F O R M A T I O N S  

The action of a one-parameter family S(~') : K --> 'K of transformations 
has the presentation 

' x i = X ' ( x  ~, qO, yf;  r), 'q~ = Q~(#,  qO, y~; ~') (6.1) 

o t  " 'y'~ = Y, (x j, qO, y~; r) 

We require these transformations to reduce to the identity transformation 
for r = 0 ,  

i q~, y~; = q .  x i ( ) d , q ~ , y ~ ; O ) = x ,  Q~(x j, j O) 
(6.2) 

o t  ' Yi (x;, q~, y:; O) =y~ 
3 

and satisfy the invertibility condition 

a(X', Q~, YT) 
S 0  (6.3) 

O(x j, qP, Y~) 



Transformations for Nonlinear Field Equations 885 

for all values of  z 6 ~ in a neighborhood of  r = 0 for each point in an open 
subset of  K. These relations are most easily envisioned in terms of  graphs 
on the Lie manifold L = K x ~ of K. The analysis given in Section 2 shows 
that the one-parameter  family of  transformations S ( r )  is a family of  exten- 
ded canonical t ransformations with source horizontal ideal W[A~] c g) (K)  
if and only if the functions YT(x d, q~, y~; z) satisfy the relations 

Y ~  E ( X k )  = E(Q") 

in which case the 'A's  are determined by (2.10). 
The major  difficulty in constructing such a one-parameter  family of  

maps is t h a t  of  securing satisfaction of the local invertibility condition (6.3). 
I f  the one-parameter  family S(~-) were to form a one-parameter  Lie 
pseudogroup,  then we could guarantee satisfaction of (6.3) in a neighbor- 
hood of  T = 0 for each point in K by integrating the orbital equations of  
the generating vector field of  the corresponding one-dimensional Lie sub- 
algebra. Since we know that extended canonical transformations do not 
form Lie pseudogroups except under very special circumstances, a different 
but similar avenue of approach will have to be used. 

We can certainly differentiate the presentation relations (6.1) with 
respect to the parameter  ~- and then use S(T) ~ to express the results in 
terms of the current coordinates {'x i, 'qq, 'y~}. This will lead to relations of  
the form 

ot  x i 3'q ~ . 
- - =  ui (, x j, , q13, , y f  ; "r ), = u,~ (, xJ, , qt~, , y f  ; "r ) 
Or 0r 

(6.4) 
o 'y7  u ~ . x  j , ~ ,  t~ 

- i t  , q , y j ; z )  
Oz 

which can be integrated subject to the initial data (6.2) to give the presenta- 
tion relations (6.1) that will necessarily satisfy (6.3) for all z in a neighbor- 
hood of  T = O. We are therefore naturally led to consider the one-parameter  
family of  vector fields 

U : u ' ( ' x  2, ,ql3, , y f ;  ~')'Oi + u ~ ( ' x  2, 'q~, ' y f ;  .r)'O~ 
~ ,  2 . (6.5) 

+ u, ( x ,  'qr 'y~; z)'O~, 

For each numerical value of  r, (6.5) serves to define a vector field on the 
contact manifold 'K  with local coordinates {'x:, 'q", 'yT}, and hence U 
defines a vector field on the Lie manifold L = K x R. The geometric structure 
defined by (6.5) is thus clear. What now remains is to determine whether 
we can place restrictions on the choices of  the functions {u i, u ~, uT} so that 
the vector field U will generate a one-parameter  family of  extended canoni- 
cal transformations.  
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Let Yg[AT~] be a completely integrable horizontal ideal of  A(K) ,  which 
we will take to be the source horizontal ideal for the transformations to be 
considered. We will assume that S(~-) is an extended canonical t ransforma- 
tion with source Yg[A~] for some fixed value of  r. Since extended canonical 
transformations form a group under target-source composition, S( ' r+e)  
should result from the target-source composit ion of S(e)  with S(~-). Thus, 
if S (T+  e) is a map from K to "K with local coordinates {"x i, 'q~, "yT}, 
then the vector field U will generate a one-parameter  family of  extended 
canonical transformations only if 

"x i = 'xi + eui( 'x  j, ' q~, ' y~ ; ~') + o(e)  
(6.6) 

,,q~ = 'q '~+eu '~+o(e) ,  "yT '= 'yT+euT '+o(e)  

is an extended canonical t ransformation with source horizontal ideal 
'~[ 'ATj] for all values of  e in a sufficiently small neighborhood of e = 0. Let 

t r t - -  t a o t / t  k 

V~= a~+'y7 G *  ~aotx , 'q~, 'y~;  ' ~ r)  a~, 1 --< i ----- n (6.7) 

',giV*l-'A~ 1 be the canonical basis for _~ L--0J. The analysis given in Section 2 tells 
us that the t ransformation (6.6) will be an extended canonical t ransformation 
with source horizontal ideal 'Yg['ATj] if and only if 

"y~ 'V~("x k ) = ' V~("q ~) (6.8) 

in which case 

*'A~m 'V~("x k) ' V f ' x  m ) = 'V~ 'V/"  q ~ ) - " y ~  'V~ 'V /"x  k ) (6.9) 

with 

*'A~ = S(e)  *"A~ (6.10) - - z j  - ~ q  

It is sufficient to our present purposes to restrict consideration to values 
of  e sufficiently small that we may neglect all terms of o(e) .  We will therefore 
use the equivalence relation a = b r a = b + o(e) .  When the t ransformation 
relations (6.6) are substituted into (6.8), we obtain the conditions 

('y~ + ~ u ~ ) ( ~  + ~ ' V,(ub)  ~ 'y7 + e 'V,(u ~) 

and hence the functions {u'~('x j, ,qt3, ,y~; ~.)} must have the evaluations 

u7 = 'Vdu "~) - 'y'~ 'V~(u k) (6.11) 

Since the ' V's involve the 'A 's  by (6.7), we will also need equations for the 
determination of  the 'A's.  In order to obtain these, we substitute the 
t ransformation relations (6.6) into (6.9). This yields 

*'af~..,j -- 'A~ ~ e{'Vi 'Vj(u `~) - 'y '~ 'Vi 'Vj(u k) 

- *'A~j 'V~(u k ) - *,a~,_,k~ ' Vj(U k)} (6.12) 
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Now, (6.10) gives 

*'A~'- -ij = S(  e ) *"A ~ ~-"A~j + _,j 

and hence the substitution 

and (6.12) yield 

"A~ = 'A~ + ea~ + o( e ) 

g87 

(6.13) 

(6.14) 

'Vi 'Oi+'yT' . . . . . . . .  k = o,~ • . a o t  x , 'q~ ,  ' y ~ ;  7-)'0~ (6 .18 )  

and the 'A 's  satisfy the evolution equations 

O'A~ 
- ' V i  'V j (u '~ ) - '  y~ 'Vi 'Vj(uk) - U( 'A~)  

OT 

p k t a - ' A ~  Vj(u ) -  Akj 'V,-(u k) (6.19) 

subject to the initial data 

I A O L [ t  k .ao~ , x , ' q t 3 , ' y ~ ; O ) =  ,~ , k , t3 Aq( x , q , 'yj~) (6.20) 

When these conditions are met, the finite transformations 

'x' = X i ( x  j, qt~, y~; ~.), ,q~ = O,~ (x j, qt~, y~; 7") 
(6.21) 

, y ;  = y,~(x j, qt~, y~; 7-) 

where 

' ' ) -  U(A~j)  ~x t ot ! ot ! ot aij = Vi Vj(u ) - Y k  'Vi Vj(u k 

I O~ t i l l  k \  t ~ o t  - Vki vj~u ) - i t k j  'V~(u k) (6.15) 

It is now only necessary to note that 

f ( m ;  7-+ e) = f ( m ;  7-) + er(rn; 7-)+ o(e) 

implies Of~07- = y(m; 7-) in order to glean the statement of the following 
theorem. 

Theorem 6.1. A smooth vector field 

U = u ' ( ' x  j, 'q~, 'y~; 7-)'0,+ u~('M, ,ql3, ,y~j; 7-)'0~ 

. A -  ot ! " , ul ( x j, 'q~, 'yj~; 7-)'0 / ( 6 .16 )  

generates a one-parameter family of extended canonical transformations 
with source X[A~] if and only if 

u~' = 'V~(u ~ ) -,yO~ ,V~(u k) (6.17) 



888 Edelen and Wang 

of the one-parameter family S(r) are obtained by solving the system of 
first-order PDE 

OX__.r ui(XJ, Q~, y~; z), oQ__~= ua(X j, Qt3, y~; .r) 

(6.22) oYi 
= 'Vi(u~)- Y~ 'Vi(u k) 

0~" 
subject to the initial data 

X'(xJ, q~,y~;O)=x ', Q'~(xi, qt3, y~;O)----q~' 
(6.23) 

Y, (x J, q~, y~; 0 ) = y ,  

Proof The previous discussion has shown that a smooth vector field 
U e T(L) can generate a one-parameter family of  extended canonical trans- 
formations only if U has the form given by (6.16) and the 'A's satisfy the 
equations of  evolution (6.19) subject to the initial data (6.20). In view of 
the smoothness of  the functions {u i, u~}, standard existence theorems 
show that the evolution equations (6.19) have solutions in a neighborhood 
N1 of z = 0  that satisfy the initial data (6.20). Once the functions 
'A~('Y k 'a s 'y~; ~') have been determined in this manner, the vector fields 
'V~ are determined by (6.18), and hence the right-hand sides of the system 
of  equations (6.22) are known functions of  the arguments {'x k, ,qt3, ,yk~, ~.}- 
The orbital equations (6.22) of  the vector field U therefore become explicitly 
determined systems of  first-order ODE. This system, subject to the initial 
data (6.23), has a unique solution of the form (6.21) on a neighborhood 
N2 c N~ of z = 0, by the standard existence and uniqueness theorem for 
systems of ODE. The invertibility condition (6.3) is therefore satisfied for 
all r in a neighborhood N3 c N2 of r = 0 by a standard continuity argument 
based on the fact that the Jacobian matrix of S(,r) has the value 1 at r = 0 .  
It thus remains to show that the transformation S(z) defined by (6.21) is 
an extended canonical transformation for all r in a neighborhood of z = 0. 
We know, however, that S(r) is an extended canonical transformation for 
all z e N3 if and only if the equations 

V~(Q ~) = gi(x  k) Y~ (6.24) 

V~( Y~m) = V~(Xk)* a~km (6.25) 

are satisfied for all z e N3 because these equations imply and are implied 
by the conditions (2.5) and (2.7), which are both necessary and sufficient 
for S(~-) to be an extended canonical transformation. We therefore introduce 
the quantities 

M~ = V~(Q t3) - Y~k gi(Xk) (6.26) 

N~,~ = V~(Y~) -'A~km V~(X k) (6.27) 
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Considered as functions of the parameter r, the quantities defined by 
(6.26) and (6.27) satisfy the initial conditions 

M~(0) = 0, N~m(0) = 0 (6.28) 

The result will therefore be established if we can show that 

M~( r )  = 0, N~m(T) = 0 (6.29) 

are valid for all r in some neighborhood N4 c N3 of  r = 0. For any map 
S( r )  given by (6.21), the relations (6.26), (6.27), and the chain rule give 

f 0 ] , 

oQ ~ 

for all ' fE A~ where 
t 13 I m 'Vk ='Ok+ Y~ 'Ot~ + Akin Ok 

AS indicated by the notation in (6.30), the transformation equations for 
S(r) are explicitly used in order to express all quantities in terms of the 
same coordinate cover. Noting that d/dr  and E commute because the 
vector fields {E} are defined on K and are thus independent of  r, (6.26) 
and (6.22) give 

dM~dr (~--r~) 13 / a X k \  k O Y~r - - v , ( x  ) 

= Vi(u13)- Y~V~(uk) - Vi(Xk)('Vk(u~) - Y~ 'gk(1,1ra)) (6.31) 

Thus, when (6.30) is used to evaluate Vr({u k, u13}), we obtain 

dM~ four3 13 o~lm) Y( Ol'll3 oblm~ (6.32) 

An identical argument starting with Nf~ gives 

dN~. ( Ou~ , 13 au k ] 13 ~ ( Ou~ , 13 ouk ~ 
dT = M i l ' ~ -  A k " ~ ' Q T } + J i ' + N ' r l ~ r -  Akmoy:J  (6.33) 

where 

f 
J~m = E(Xr)l 'Vr 'Vm(U13)-- Y~ 'Vr I V tn (uk  > 

_,A~m,E(u k) , 13, _d'A~m~ (6.34) -- Ark Vm(Uk) dr J 

However, the 'A's are functions of the current coordinates {X i, Qt~, R~} 
and r, and hence 

d'A~,. OA~,. 
- - -  - -  + U('A~,,,) (6.35) 

dr dr 
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Thus, when the evolution equation (6.19) is used to evaluate O'A~m/O~" in 
(6.35) and the results are substituted into the right-hand side of (6.34), we 
obtain 

J~,, = 0 (6.36) 

The system of equations (6.32), (6.33), and (6.36) shows that the quantities 
{M~(z), N~,,(r)} satisfy a system of homogeneous, linear, first-order 
differential equations with smooth coefficients, subject to the homogeneous 
initial data (6.28). The fundamental existence and uniqueness theorem for 
such systems shows that there exists a neighborhood N4 of ~" = 0 such that 

M~(z) = 0, N~m(r) = 0 V'r E N 4  (6.37) 

and the result is established. [] 

There is an important decomposition of any vector field that generates 
a one-parameter family of extended canonical transformations with source 
~[A~].  Any such vector field has the form 

U = u i 'Oi + u r '04 + (' Vj(u ~) - 'y~ 'Vj(uk))'O~ (6.38) 

by Theorem 6.1. Now, 

IV/--! - 0, + 'y7 '0~ + 'A~ '0~ 

and hence (6.38) can be written in the equivalent form 

U = u i ' V i + ( u  '~ - ' ~yku k,,-)O~, + ' V j ( u  ~ _ ,..~ /~,~ (6.39) 

because 

'V j (u  ~ - ' y ~ u  k) = 'Vj(u  ~) - ' a ~ u  k - ' y ~  'Vj(u  k) 

These calculations establish the following result. 

Theorem 6.2. Any vector field U c T ( L )  that generates a one-parameter 
family of extended canonical transformations with source ~[A~]  e g)(K) 
admits the decomposition 

U = u ~ 'V~+P (6.40) 

with 

P = p'~ '0~ + 'V~(p'~)'O~ (6.41) 

u ' =  u i ( ' x  j, 'q~, 'y~; z) ,  p~ =p~, ( ,x  j, ,q~, ,ytf ; z)  

and the flow generated by the vector field P leaves the base manifold D,  
of the independent variables invariant. In addition, the evolution equations 
(6.19) that the 'A's must satisfy reduce to 

o 'a~  = 'V~ 'Vj (p  ~) - P ( ' A ~ )  (6.42) 
Oz 
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The collection of all generating vector fields of  one-parameter families 
of canonical transformations with source ~g[A~] will be denoted by ect[A~]. 

t - -  P ~ P Let U1 and U 2 be two elements of ect[ATj] and set Zi- '0~ + ri G- Then 

Vr = ' s  + . . . . .  k ' A(1)ijt x , 'q~, 'y~; ~-)'0~ 

and 

V(2)~ = 'Z~ + . . . . .  k ' A(2)ot x , 'q~, 'y~; r)'O~ 

will be different because 'A(~),j and 'A(~)o satisfy different systems of 
evolution equations in general. Accordingly, aU~+ bU2 will not belong to 
ect[A~] in general because the 'V's for a U l + b U 2  will not be a linear 
combination of the 'V's for /51 and U2 in general. 

Theorem 6.3. The collection ect[A~] of all generating vector fields of 
one-parameter families of  extended canonical transformations with source 
Y([A~] does not form a linear subspace of  T(L) .  

There are, however, subsets of ect[A~] that are both linear subspaces 
and Lie subatgebras of T(L) ,  as the following result shows. 

Theorem 6.4. The collection ect[A~] contains the infinite-dimensional 
Lie algebras ISO[A~] and pr(1)(r( 'G)).  

Proof It was shown in Section 10 of Edeien (1990) than any isovector 
of  the completely integrable horizontal ideal Yg[A~] was of the form U = 
u ~ V~ + W with 

w = .~o~ + v , (n~  

for any {V ~} e A~ that satisfy 

V~Vj(~? ~) = W(A~)  

Hence, any isovector of  '2(['A~] is of the form U =  u ~ 'V~+ W with 

W =  n '~ 'O, +'V~(rl~)'O~, ,,~ = rl~(,xj, ,qt~, ,y f )  

and {~7 ~} satisfying 

'V~ 'Vj(~7~) = W('A~j) 

Theorem 6.2 shows that any U = u ~ 'V~+ W belongs to ect[A~j], and (6.41) 
shows that the 'A's will satisfy the evolution equations 

o'a~j = 0  

Since the initial conditions for these equations are 

' a~( ' x  k, 'qr 'y~; 0) = "-0,a~('ri--, ' at3~ , 'Yf)  
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we have 

,A~ (,x/, ,qt3, ,yf;  z) = A~('x d, 'q~ 'yf)  

that is, the 'A's are invariants of this one-parameter family of transforma- 
tions. Since the 'A's do not evolve for any element of ISO[A~], the 'V's 
for any two elements of ISO[A~] will be the same. Accordingly, ISO[A~] 
forms a linear subspace of T(L ) ,  and the results established in Section 11 
of Edelen (1990) show that ISO[A~] forms a Lie algebra. An element of 
pr~ has the form 

U = u i '0, + u ~ 'as + ('V~(u ~) - ' y ~  ' V~(u k))'O~ 

with u i=u i ( ' x J , ' q~ ) ,  u ~ = u ~ ( ' x J , ' q " ) ,  and hence any element of 
pr(1)(T('G)) belongs to ect[ATj]. Since the functions {u i, u "} do not depend 
on the arguments {'y~}, we have 

'V,({u i, u~})= 'zj({u i, u ~ 

with 

'Z, = 'ai + ' y7 'ao 

Hence, any U e pr(1)(T('G)) takes the equivalent form 

U = u i t O i . ~ _ u O t t O o L _ ~  tZ i (uoe  , ~ k , , - i  --  y k U  2 0 ~  

Thus, since the 'Z 's  are the same for all elements of pr~ linear 
combinations of elements of pr~ are elements of ect[A~] even 
though the 'A's are z-dependent because they satisfy the evolution equations 
(6.19). Further, we know that pr~ forms a Lie algebra that is 
universal with respect to the choice of the source horizontal ideal and that 
'K and K coincide for r -- 0. We have therefore shown that the Lie.algebras 
ISO[A~] and pr~ are contained in ect[A~]. [] 

There is much more here than first meets the eye, however. Let 
ISO[A~]: A~ and pr~176 be the modules constructed from 
ISO[A~] and pr(~)(T('G)) where multiplication by elements of R is re- 
placed by multiplication by smooth functions of z. An element W of 
prm(T( 'G)) :  A~ thus looks like 

W =  iel k , y k  u ) 0,~ u ~x ,,qt~; r),a~+u~(,xk,,qt~, z) ,a~+,Zi(u~_,  ~ k,,~ 

Calculations similar to those given in the proof of Theorem 6.4 show that 
the modules ISO[A~]: A~ and pr~  A~ are Lie subalgebras 
o f  T ( L )  that are contained in ect[A~]. These Lie algebras are not the 
Lie algebras of Lie groups, in general. In order to see this, consider the 
Lie subalgebra of pr~ that is generated by the r elements 
{U1, U2 . . . .  , U~}; that is, [[U~, Ub] = C~bU~. The vector fields {W~ = 
N~('r)Ub[l<--a<--r, d e t ( N ] ( r ) ) r  will generate a Lie subalgebra of 
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pr(1)(T('G)): A~ with 

[[ W~, Wb~ = K~b(r) W e 

N~(r )Nb(r )C.bnc(T) ,  N~(~')nbc(T) = ~c 

Since the vector fields { W . I 1 - < a -  < r} are vector fields on ' L = ' K •  we 
have functions o f  structure K ~b (r) rather than constants of  structure. Accord- 
ingly, the second fundamental theorem of  Lie tells us that the Lie algebra 
generated by { W~}, as an algebra over R, is not the Lie algebra of  germs 
of  a Lie group. 

We are able to get these more general Lie algebras as algebras over 
the ring of  smooth functions of  z because ECT forms a group under 
target-source composition and we are certainly able to change from one 
element of  ISO[A~j] (of  pr(1)(T('G))) to another as we move from one value 
of  z to another. For example, for n =2,  N =  1, with local coordinates 
{x, t, q, y~, y,} on K, the vector field 

W =  (,q)2 e" 'Oq +2'q  e~('y~ '0 ~ + 'y, '0 f) 

generates the one-parameter family of extended canonical transformations 

'x = x, 't = t, 'q - q 
l + q ( 1  - e  ~) 

Y~ Y, 
' Y ~ - { l + q ( l _ e . ) }  2' ' Y ' - { l + q ( l _ e ~ ) }  2 

for any completely integrable source horizontal ideal because W belongs 
to pr(1)( T( 'G)) :  A~ and this module is universal with respect to the choice 

1 of  source. Thus, for example, if we take A~ = k~ = kj, where the k's are 
constants, then direct calculations based on (2.7) give 

, l = { l _ , q ( l _ e ~ ) } 2 k u  2(1-e~)'Y, 'YJ 
A~j l _ , q ( l _ e ~ )  

It is then easily checked that these evaluations satisfy the evolution equations 
(6.19) subject to the initial data (6.20). 

Theorem 4.4 shows that extended canonical transformations that 
change the A's can be restricted so that the independent variables are 
invariants of  the transformation. We also know that any U ~ ect[A~] can 
be written in the form U =  ui( '#,  'q~, 'y~; r) 'V~+P, that any vector field of 
the form ui'V~ belongs to ISO['A~]:A(R),  and that u~'V~ generates 
automorphisms of the leaves of  the foliation generated by '~[ 'A~]  (see 
Section 12 of Edelen, 1990). It is therefore useful to study the subset 

ect•  ~ 0~+ V~(p ) a~lp ~A~ (6.43) 
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of ect[A~]. Vector fields P in ect• have the property that the evolution 
equations (6.19) reduce to 

O'A~ _ 'V~ 'Vj(p") - P('A~) (6.44) 
O'r 

In particular, for any 

p = p~, (,x k, ,qt3; ~')'0,~ + 'Zi(p '~) '0~ (6.45) 

in ect• c~ pr(l)(T('G)): A~ the evolution equations (6.44) reduce to 
the quasilinear system 

( 0 + )  z , jp  ~ (6.46) P ( 'A~)='A~'O~(p~)+'Z~'~(  ~, 

with the same principal part. They can therefore be solved directly by the 
method of characteristics. We hasten to remind the reader that the set 
ect• does not form a subspace of T(L) and therefore does not form a 

t t c~ v i Lie subalgebra of T(L) because vector fields P=p'~ 0,~+ V~(p ) 0 ~  
ect• with different choices of {p~} will lead to different 'A's in general. 

7. AUTOBALANCE TRANSFORMATIONS AND THE 
GENERATION OF SOLUTIONS 

Let ~[A~] be a completely integrable horizontal ideal of A(K) and 
let ~:  D.-> K be a solution map of the balance ideal 

= I {C  ~, H'~, B,} (7.1) 

The map �9 thus satisfies 

xIt*~ r 0, qv*C~ =0, ~*H~ =0, ~*Ba =0  (7.2) 

and hence qt is also a solution map of the fundamental ideal N =  
1{C '~, dC '~, Ba, dB,~} that satisfies the constraints ~ * H 7  = 0. If P s ect• 
generates the one-parameter family of elements Sv(z) of ECT, then Sv(z) 
carries the balance ideal N of A(K) into the balance ideal 

' ~  = I{ 'C ~, 'n~ ,  'Ba} (7.3) 

of A('K) with balance n-forms 

'Ba = (Sv(z)-l)*B~ (7.4) 

The one-parameter family of maps 

�9 e(~') = Sp(z) o ~ (7.5) 



Transformations for Nonlinear Field Equations 895 

thus satisfies 

�9 v(~-)*/~ = ~ *  o Sp0")*/~ = "~*/~ # 0 (7.6) 

because any Sp(z) leaves the base manifold invariant for P ~ ect . [A~],  and 

~t p ( Z ) * ' ~  = ~ *  o S p ( z ) * ' ~  = ~ * ~  = 0 (7.7) 

This shows that the one-parameter  family of  maps ~ p ( Z )  : Dn ~ ' K  solves 
the balance ideal ' ~ .  It therefore solves the fundamental  ideal 

'5~ : I { ' C  ~, d ' C  ~, 'Ba, d'Ba} (7.8) 

This process of  generating solving maps of  the target balance ideal '@ 
is not effective for arbitrary generating vectors P c  ect• because the 
target balance n-forms 

'B~ = ( Sp( ' r ) - l )*  Ba (7.9) 

will be different from the balance n-forms B~ that we wish to solve. The 
structure of  the relations (7.9) shows that there can be elements P ofect•  
for which the target balance n-forms in the coordinate cover of  ' K  will 
have an identical functional form to the original balance ideal will be a 
solving map  for the original system of  PDE of  the problem. These preferred 
elements of  ect_L[A~] are those for which 

s  _ b ~ 1 - <  < ( 7 . 1 0 )  B~ = N o  'Bb mod Y([A~], a - r 

where we take 

'Ba = ha('x k, 'qr 'y~k)'lx i , k - d W ~ (  x , ' qr ' y~)  ^ I~, 

when the original balance n-forms on K are given by 

B,  = h~(x k, qt~, y ~ ) ~ _ d W ~ ( x  k, qt3, y~) ^ I~, 

Definition 7.1. An element P of ect• that satisfies the system of 
R equations (7.10) is referred to as an autobalance vector field of  the balance 
ideal N. The collection of all autobalance vectors of  N is denoted by 

a u t d ~ ]  = {P ~ ~ , b mod  'Y(['Av] } (7.11) ec t •163 B ,  =- N~  ' B  b 

These considerations have established the following basic result. 

Theorem 7.1. Let Y([A~] be a completely integrable horizontal ideal 
of  A(K)  and let ~ :  D , -~  K be a leaf map of the foliation generated by 
YC[A~] that is also a solution map of the balance ideal ~ = I { C  ~, HT,  Ba} 
for a system of PDE with balance n-forms B~. Each element of  the one- 
parameter  family of  maps 

~ p ( r )  = Sp( z )  o �9 (7.12) 
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is a solution map of the fundamental ideal for each autobalance vector P 
of the balance ideal ~.  

What now remains is to obtain explicit characterization of the condi- 
tions under which an element P of ect_L[A~] will be an autobalance vector 
of ~. 

Theorem 7.2. Let ~[A~]  be a completely integrable horizontal ideal 
of A(K)  and let { V~[1 - i -  n} be the canonical basis for ~*[A~]. A vector 
field P c  T(L)  is an autobalance vector of the balance ideal ' ~  = 
I{ 'C ~, 'H~, 'B,} with balance n-forms 

'B, = h,( 'x  k, ,qt~, ,YCkk),lx _ d W i a ( , x  k, ,qt3, 'Y~k) A '/X~ (7.13) 

if and only if P has the form 

p = pC, '0~ +'V~(p'~)'O~ (7.14) 

and the N generating functions {p~ ~ A~ satisfy the system of r linear, 
second-order PDE 

P(ha) i i - '  V~P(Wa)= N b ( h b - ' V i (  Wb)), 1 <-- a <-- r (7.15) 

for some choice of the functions {Nab ~ A~ ~ 

Proof. A vector field P c T ( K )  belongs to ect• if and only if it is 
of the form (7.14). Therefore, since aut•  c ect• we may assume 
that P is given by (7.14) for some choice of the  N generating functions 
{p~}. Since P d d 'x  i= O, it follows that s  'Ix = 0 and s  '/zi = 0, and hence 
(7.13) yield the relations 

s  tJ~a = e(ha)' lx - d(  P( W~a)) ̂  'tZ, (7.16) 

However, d f =  'V~(f) d'pd mod '~[ 'A~],  d 'x  j ^ '/zi = 6{ '/z, and hence 
p l -- t i t t t r Ba = {P(ha) -  V~P(W,)} /x mod Y([ Ao] (7.17) 

It thus follows that 
b 

' ' ~ N a ( h b -  V~(Wb) /zmod Yg[A,~] s B~ =- N , B b  mod Yg[ A~]=- b , i . . . .  

if and only if the N generating functions {p~} satisfy the system of r 
second-order PDE given by (7.15). �9 

Remark. The reader may wish to pursue the theory with elements 

U = u' 'Oi + u r '0~ + (' V~(u ~ ) -'y'~ 'V~(uk))'O~ (7.18) 

of ect[A~] in general position. A calculation similar to that given above 
shows that the conditions (7.15) are replaced by 

U(ha) + (ha -'V~(W~)) 'Vm(u")  

- 'V~U(W~)+'V~(u k) 'Vk(W~)= Nba(hb -'V~(W~b)) (7.19) 
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A direct combination of  Theorems 7.1 and 7.2 provides the following 
results that are instrumental in obtaining solutions to nonlinear systems of 
balance equations. 

Theorem Z3. Let ~[A~]  be a completely integrable horizontal ideal 
and let �9 : D,  -* K be a solution map of the balance ideal ~ with balance 
n-forms 

Ba = ha(x k, qr y~k)lX -- dW~a(X k, qr Y~k) ̂  IX, (7.20) 

Each collection of  N generating functions {p" e A~ a-< N} that 
satisfy the system of r second-order PDE 

P ( h . ) -  E P ( W o ) =  b , , N a ( h b -  V~(Wb)), l<--a<--r (7.21) 

I r cx t i where P = p ~  a~+ V~(p ) a s  and 

^ A i  i t k ha = ha('x g, 'q~, 'yk~), Wa = Wa( x , 'q~, 'Y~k) (7.22) 

gives rise to a one-parameter family 

�9 p(~) = Sp('r) o ~ (7.23) 

of solution maps of  the fundamental ideal. 

Autobalance vector fields of a given balance ideal are generalizations 
of the notion of  isovector fields of  a fundamental ideal. Elements of  aut• ~ ] 
serve the same purpose as elements of iso[~];  namely, they implement the 
embedding of  any solution map in a one-parameter family of  solution maps. 
In particular, they give immediate information concerning the connectivity 
of  solution maps of the system of PDE under study. The set au t •  is 
intrinsically different from iso[~] because iso[~] forms a Lie algebra, while 
au t •  does not even form a linear subspace of T ( 'K )  over R. 

The usefulness of these considerations depends critically on the fact 
that ~ is a solving map of the balance ideal ~ = I { C  ~, H~,  Ba}, and hence 
the graph of �9 is a leaf of the foliation of K~ that is generated by the 
completely integrable horizontal ideal ~[A~].  This means that if we know 
a solution map qb of the fundamental ideal, then we must find the completely 
integrable horizontal ideal ~[A~]  such that qb*H~ = 0; that is, we have to 
find the appropriate A's. This is an easy task, however. If qb has the 
presentation 

(plx i = x i, q~ = d/~(Xk), y~' = O i t ~ a ( X  k )  

then the choices 

A~ = O,Oj& ~ (x k) (7.24) 
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give a completely integrable horizontal ideal ~[Oiaj~b '~ ] such that the graph 
of  �9 is a leaf of the foliation of K that is generated by Y([0i0j~b~]. Thus, 
Theorem 7.3 shows how to embed any solution map of the fundamental 
ideal in one-parameter families of solution maps for each solution of  the 
system (7.21) of r second-order PDE in N unknowns 

{p'~ ~ A~ K ) l l  <- a <- N }  

There is a subtle aspect of  this problem that has yet to be faced, 
however. The vector fields 'V~ have the evaluation 

'V~ = '0i + 'y7 '0~ + 'A~ '0~ (7.25) 

so they depend explicitly on the 'A's. The 'A's must satisfy the system of 
evolution equations (6.30), which also depend explicitly on the functions 
{p~ 6 A~ We therefore have to solve the simultaneous system of partial 
differential equations 

P(h~) - 'V~P(W~) = Nab(/~b --'Vii(I~r (7.26) 

O'A~ = 'V~ 'Vj (p  '~) - P ( 'A~ )  (7.27) 
0z 

subject to the initial data 
I ~ a / t  k l-lot x , ' q~, ' y~; O) = A ~ ( ' x  k, ' q~, ' y~)  (7.28) 

t - - a / t  k for the functions p ~ ( ' x  k, 'q~, 'yg; z)  and ~aqt x , ,qt3, ,y~; z), where 

P = p'~ '0~ +'V~(p~)'O ~ (7.29) 

'V~ = '0~ + 'Y7 '0~ + 'a~ '0~ (7.30) 

It is thus through the initial data (7.28) that the information contained in 
the starting horizontal ideal ~f[A~] is included. For example, if the A's are 
chosen in accord with (7.24), then the initial data (7.28) become 

. . . . .  k o ~ c b ( ' x k )  
~%j~ x , , qt3, , y~; O) = a,x~O,xJ 

Most of  the results given in Edelen (1990) use the notation 

/3 = / ~  -'V~(I~'~) (7.31) 

Solving the system (7.31) for {/~}, we have 

P(/~a) = P(/3~) 

Thus, since [P, 'V~(~r = P' V~(I~r - 
equivalent form 

A A , 

P(Fa)+~P,  'E](W'a) = 

+ P'V~(r162 (7.32) 

'V~P(W'a), equations (7.21) take the 

N~/3b, l <--a<--r (7.33) 
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In particular, if '~['AT~] ~ ~)~('K), then Fa = 0, 1 -< a --- r, and every leaf of 
the foliation generated by '~[ 'A~] is the graph of a solution map of the 
fundamental ideal. Under these conditions, (7.33) reduce to the drastically 
simplified, but nontrivial requirements 

lIP, ' V~](W~) = 0, l<-a<_r (7.34) 

These results have a number of aspects in common with those obtained 
for isovector fields of the fundamental ideal 5~ of a given system of balance 
n-forms. Isovector fields of the fundamental ideal will usually induce flows 
that change the independent variables {xi}. We will therefore drop the 
requirement that only elements of ectj_[ATj] be considered. We therefore 
consider the set 

au t [~]  = { U ~ ect[A~]ls 'B a ~ L~ 'Bb mod '~['ATj]} (7.35) 

of generating vector fields of unrestricted autobalance transformations 
of the balance ideal. The equations that determine elements of au t [~]  
are (7.19). 

Theorem 7.4. The collection au t [~]  contains the Lie algebra iso[•] n 
pr~t)(T('G)) of all isovector fields of the fundamental ideal. 

Proof The intersection of Lie algebras given in the hypothesis is to 
exclude those elements of iso[5 ~] that are not prolongations when N = 1. 
Since every element of the indicated Lie algebra is a prolongation, 
pr~l~(T('G)) c ect[A~], and prolongations are universal with respect to the 
choice of the source horizontal ideal, it follows directly from the definition 
of iso[5 ~] that iso[5 ~] n pr(1)(T('G)) belongs to aut [~] .  1 

This theorem is important for two reasons. First, it shows that any 
system of equations of balance with a nontrivial isogroup necessarily admits 
a nontrivial collection of one-parameter families of unrestricted autobalance 
transformations. Second, since iso[5~] n pr~)(T('G)) is contained in au t [~] ,  
the collection au t [~]  is possibly much larger than iso[5~] n pr<~)(T('G)). 
In fact, it is clear that those elements of au t [~ ]  that do not belong to 
iso[5 ~] n pr~)(T('G)) are vector fields that generate symmetry transforma- 
tions of the system of equations of balance that cannot be obtained in the 
standard jet bundle formulation. Similar conclusions hold for the collection 
au t l [~ ] .  

8. SOLUTIONS OF THE NAVIER-STOKES EQUATIONS 

One of the oldest nonlinear problems is that of obtaining solutions to 
the Navier-Stokes equations for an incompressible fluid. Let fi be the 
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viscosity, p be the density, P be the pressure field, and introduce the 
parameters p = P / p ,  M = ~ / p .  T h e  governing PDE are 

O t U + ( U ' V ) U + V p = M V 2 U ,  V . U = 0  (8.1) 

where U is the velocity vector field of the fluid. Although the problem can 
be studied in this general context, in which case the contact manifold is of  
dimension 24, we restrict the problem in the interests of simplicity to flows 
with only two spatial dimensions. This means that U = u(x ,  z, t ) i+ w(x ,  z, t)k 
and that the pressure is a function of  the variables {x, z, t} only. 

The appropriate contact manifold K has dimension 15 with a system 
of local coordinates 

. . . . .  ,,~ ,,P ,,P y~} (8.2) {z a} = {x, z, t, u, w, p, y~, y~, Yt, Y~, Y~, : t ,  ~ ,  :,~, 

The contact 1-forms that are required for the problem are 

C ~ = du - y~ ,  dx  -y~z dz  - y ~  dt  

C ~ = dw - y ~  d x - y ~  d z - y ~ '  dt  (8.3) 

C p = d p - y P  d x - y P z  d z - yP t  dt  

The volume element and the boundary elements of the base manifold 9 3 c ~3 

are given by /z = dx  ^ dz  ^ dt, I ~  = dz ^ dr, tz~ = - d x  ^ dt, tz~ = dx  ^ dz. T he  

field equations (8.1) are then encoded by the balance 3-forms 

B1 = (Y7 + uy2 + wy~ + yP)tz - dN~ 
w W p B2 = (y  W + uyx + wy~ + y~)tz  - dN2 (8.4) 

B3 = (y  U + y~z )IZ 

where 

N1 = M ( y ~ # x  +y'~tZz), N2 = M(y'~tZx + y f l z z )  (8.5) 

These balance 3-forms are easily seen to be of the standard form Ba = 
hag-dWia ^ tzi. The balance ideal for this problem is therefore of  the 
form N = I{C ~, HT, Ball---i, a, a - 3 ) .  Since there are only two spatial 
dimensions, the vorticity vector has the representation ~7 = ~j and ~ has 
the representation 

= y ~ _ y W  (8.6) 

on K. 
Let Yg[A~, A~, A~] be a completely integrable horizontal ideal of  A(K) ,  

and let { Vx, V~, V,} be the canonical basis for Yg*[A~, A~, A~]. We will only 
write out one of these, in view of their length: 

. . . .  A~zO, + A~tO~ V =Ox+y~ ,O~+y~O~+yPOp+AxxO~+ ~ z ~ t 

+ A ~ O w + A W O Z + A W t O , w +  p ~ p z p , w x AxxOp+AxzOp + AxtOp (8.7) 
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A vector field 

P U l  i v w l  i t p !  i P=p~'Ou+p'~ 'Ow+p' 'Op+ V~(p )0~+ V~(p )Ow+ V~(p 50 v (8.8) 

belongs to autL[~] if and only if the generating functions {pU('za; r), 
pW('zA; r), pV('zA; r)} satisfy the system of second-order PDE 

A v ~ " b A t 

P ( h a ) -  V~P(W'a) N a ( h b -  *i = V~(Wb)) (8.9) 

For the purposes of this discussion we will only consider elements ofaut•  
for which b Na = 0; that is, autobalance vector fields for which the balance 
n-forms are absolute invariants. An expansion of (8.9) by use of (8.4) and 
(8.5) gives the explicit equations 

'V~(p u) + pU ,y~, + p W , y~ + (' u'Vx + ' w' Vz)(p ~) + 'Vx(p p ) 

= M( 'Vx  'Vx+'V~ 'V~)(p u) (8.10) 

,Vr(pW) + p U , y,~ + pW , y~ + (' u'Vx + 'w' V~)(p ~) + 'V~(p p) 

= M( 'Vx  'V~ + 'V~ 'V~)(p ~') (8.11) 

'V~(pU)+ 'Vz(pW)=O (8.12) 

Any solution {p~, pW, pP} of these equations will give a one-parameter family 
Sp(Z) of extended canonical transformations that maps the source balance 
ideal ~ into the target balance ideal '~  and preserves the functional forms 
of the balance 1-forms. It must be carefully noted, however, that 

v t , !  ! t~ Vi - O~ + 'y'~ 0~, + A o. '0~ (8.13) 

which involve the 'A's. Accordingly, the equations (8.10)-(8.12) have to be 
solved simultaneously with the evolution equations 

O'A~ = 'V~ 'Vj(p ~) - P('A~) (8.14) 
Oz 

subject to the initial data 

, - - a / t  A. 0 )  c~ t A .aut z , = A u (  z ) (8.15) 

These considerations establish the following result. 

If �9 : D3 ~ K is a leaf map of the completely integrable horizontal ideal 
Yg[A~, A~, A p] that solves the balance ideal for the Navier-Stokes equations 
of an incompressible, two-dimensional flow, if 

{pU( ' zA;  T ) ,  pW(' za; r), pP( ' zA;  T), 'lqkij [ . . . .  zA', 'T), ' /-lij ~, . . . .  zA', 7 ' ) ,  vAP('~A'../j~ - , 7")} 

is any solution of the second-order system of PDE (8.10)-(8.12), and the 
evolution equations (8.14) subject to the initial data (8.15), if the vector 
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field P is defined by (8.8), and if Sp(r)  is the one-parameter family of 
extended canonical transformations generated by P, then the one-parameter 
family of  maps ~ p ( T ) =  Sp(T)~  solves the fundamental ideal of  the 
Navier-Stokes equations for each value of  r in a neighborhood of ~" = 0. 

The reader should note that each of  the maps ~p(Z)  has a common 
domain, J3CD3, because the flow of  the vector field P leaves the base 
manifold D3 invariant. 

Obvious starting solutions for problems with the Navier-Stokes 
equations are those for potential flow of  a perfect fluid. These solutions are 
irrotational and give rise to zero viscous forces. Let {p", p ' , p P }  be any 
solution of the system (8.10)-(8.12) for a source ideal for which one leaf 
of  its foliation is a solution of  the Navier-Stokes equations for a potential 
flow. The one-parameter family of solutions that embeds the starting solution 
will have nonzero viscous forces, in general. If  ~- is the parameter of  the 
embedding, then to first-order terms in z, (8.6) gives 

' rl ~" ~0 + TP(y~ -- y~)  = 71 + T(Vz(p")  - Vx(p~') ) (8.16) 

The resulting solutions for ~" r 0 will thus have nonzero vorticity, in general. 
A similar evaluation of  the viscous forces gives 

d'Nx ~ tiN1 + ~-( VxVx + VzVz)(p")~, 
d 'N2  ~ dN2+ z(  VxVx + VzVz)(pW)tx (8.17) 

and hence the resulting solutions for z ~ 0 will have nonzero viscous forces, 
in general. The embedding thus gives one-parameter families of  solutions 
of the Navier-Stokes equations that will be both new and interesting. 

We can also start with a known exact solution of the Navier-Stokes 
equations. For example, take 

_~ 2 Muo 
U =  ( a 2 -  z2)i, P = P o  a2 x (8.18) 

which describes the steady flow of a viscous fluid between two fixed parallel 
plates that are situated at z = +a. The appropriate, completely integrable 
horizontal ideal Y([A~] is obtained by the assignment 

Az"z = -2aU~ (8.19) 

and all other A's set equal to zero. We therefore have the canonical basis 
vectors 

W x =  U w p Ox + yxO, + yxOw + yxOp 

2Uo 
Vz = Oz + y~O,, + yWOw "t'- yPzOp ----~'-  O u (8.20) 

V, = o, + yTO. + y~Ow + yfOp 
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for Yf*[ATj]. A complete system of independent primitive integrals of the 
system { V~(g) = 0tl - i -- 3} is given by 

u u u ? 2 0  Z 2 
g~ = u - y ~ x - y ~ z  - Y t  t a2 

gW = w - y ~ x - y W z - y ~ ' t ,  gP = p - y P x - y P z - y f t  

u 2Uo 
g~ = y~, g~ = y~ + a-- T z, g~' = y~' 

g ~ = y ~ ,  gW=yW, g ~ , = y .  

gP~=yP g ~ -  P , - Y z ,  gVt=YPt 

(8.21) 

The solution leaf of the foliation generated by Yg[A~] is therefore specified 
by 

g" = Uo, g~=g~ =gT=O 

g W = g W = g ~ = g ~ = O  

2Muo (8.22) 
gP = Po, gP a 2 , gP = gPt = 0 

The initial data for the evolution equations (8.14) that the 'A's must satisfy 
are therefore given by 

, u , A. 2u0 = z . . . . . .  A.  O) - - ' a P ( ' z  A ,  0 ) = 0  ( 8 . 2 3 )  A~( z ,0 )  - " ~  6 i6 j ,  ,ao~ z , 

A direct approach to solving the Navier-Stokes equations is provided 
by the method of extended Hamilton-Jacobi maps. Here, we consider 
extended canonical transformations of the form 

HJl'x' =x', 'q~ = J~(zA), 'y~ = gi(Ja(zA)) (8.24) 

where {V~[I_< i_< n} is a canonical system associated with a completely 
integrable horizontal ideal ~ [ A ~ ] c A ( K i ) .  Such transformations are 
Hamilton-Jacobi transformations for the balance ideal of the Navier- Stokes 
equations if and only if HJ* pulls the balance n-forms (8.4) back to zero 
rood Yg[A~]. This gives us the requirements 

?~, = E(J")+ J"V~(J~)+ jWVz(J")+ vx(J") 

- M (  V~Vx + V~Vz)(J") = 0 (8.25) 

~ =  V,(F)+ J"VAF>+ jwvAF)+ VAJ p) 

- M (  VxVx + V,V,)(J w) = 0 (8.26) 

_~3 = Vx(J")+ Vz(JW) = 0 (8.27) 
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If  we take the generating functions {s ~, s w, s p} to be functions of the 
variables {x, z, t} only, then (8.25)-(8.27) reduce to the original Navier- 
Stokes equations. Thus, any solution of the Navier-Stokes equations gener- 
ates an extended Hamilton-Jacobi map for those equations that simply 
reproduces that known solution. For example, if we take A~ = 0, an inspec- 
tion of (8.25)-(8.27) shows that a solution is given by 

J~ = a ( t ) + b z + l c z 2 + y ( z ,  t), JW=0 

JP = po + ( Mc -----~-]da( t) ~x 

for any smooth function a(t) and any smooth function y(z, t) that satisfies 
the linear diffusion equation 

O•= M O2T 
Ot Oz 2 

If  we take the generating functions {J", jw, jp} to be functions of the 
w w w p p variables {u, w, p, y~, y~, y~, Yx, yz ,  y t ,  Yx, yz ,  yf} only, then the system 

(8.25)-(8.27) becomes a new system of nonlinear, second-order PDE whose 
solutions will generate solutions of the Navier-Stokes equations by the 
corresponding Hamilton-Jacobi map of leaves of the foliation generated 
by the source horizontal ideal ~[A~].  For example, if we take 

c~ tx a A~ = k~ = kj,, dkij = 0 (8.28) 

then the operators { V~ I 1 -< i <-3} are determined and the q's on leaves of the 
foliation of K that are generated by Yg[A~] are quadratic functions of the 
x's. Remembering that ~ V~, Vii = 0, equation (8.27) has the general solution 

ju = Vx(6)+ Vz(~), jw = Vz(ch)- V~(~) (8.29) 

for any smooth functions ~b and ~ of the variables {u, w , . . . ,  yP} such that 

( VxVx + VtVt)(qS) = 0 (8.30) 

The relations (8.29) can then be put back into (8.25) and (8.26) to obtain 
a system of two PDE in the unknowns {~b, ~, sP}. Since [[ V~, V~] = 0, the 
unknown s p can be eliminated from these two equations by cross application 
of V~ and Vz, and for ~ = 0, we obtain a single, nonlinear, fourth-order PDE 

0 = [ V, - M (  V~V~ + VzV~)]( V~V~ + V~Vz)(~) 

+ ( V~(~) Vx-  Vx(se) V~)( VxVx + VzVz)(~) (8.31) 

for the determination of ~:. We note that this equation becomes linear if 
either V~(~:) = 0 or Vz(~) = O, and hence it is easily solved in these two cases. 
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Any solution of (8.31) can be put back into (8.25) and (8.26) and s p can 
then be determined by quadratures. The extended Hamilton-Jacobi method 
can thus provide a large class of interesting solutions to the Navier-Stokes 
equations. 

A simpler choice for the A's is 
u w p A~ - A~ - Av = 0 (8.32) 

in which case the q's become linear functions of the x's on the leaves of 
the foliation of K that is generated by ~[A~ = 0]. If  we set 

j w = 0  (8.33) 

the system (8.25)-(8.27) reduces to 

Vx(J u) - 0, Vz(J p ) = 0 (8.34) 

V,(JU)+ Vx(J p) = MVzVz(J  u) (8.35) 

If  we introduce the new variables 

~ = - Y ~ w - Y  wu, ~7 = - y ~ p - y P u  (8.36) 

a = y ~ w - y ~ u ,  fl ~ P = y z p - y ~ u  (8.37) 

then the equations (8.34) are satisfied by 

JU = all(f, rl; y[) ,  JP = ~ ( a , / 3 ;  y'/) (8.38) 

Noting that any three of the variables {~, ~7, a,/3} are independent, for y's 
in general position, (8.35) can be satisfied only if 

JP = a ( y f ) a  + b(yf) /3 (8.39) 

in which case (8.35) reduces to 

w u w u 0 / r  p u O ~  

(Y, Yx - Y x Y ,  ) _---:+ (YfY~ - Y x Y t  ) - -  a~ a~7 

- M  (y~y~,_yWy,~) + ( y ~ y ~ _ y ~ y ~ )  all ) 

3" w u w u y p u p u 
-- a(yj  )(Yz Y x -  Y~Y~) + b(yj  ) ( y ~ y ~ -  Y~Yz) (8.40) 

Since the y's are parametric variables, (8.40) is a linear, inhomogeneous, 
second-order PDE that is readily solvable for the function 0//(~, ~7; Y~). We 
therefore have the Hamilton-Jacobi maps of the Navier-Stokes equations 
that are generated by 

J" = ql(y~w - y ~ u ,  y~p - y P u ;  YT), jw  = 0 (8.41) 

JP = a(yy)(y~z W - y W u) + b(y]')(y~p - yPzU) (8.42) 
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for  every choice  o f  the  func t ions  a (y~) ,  b(y~)  and  for  every func t ion  
q/(~:, 77; y~) tha t  satisfies (8.40). Since 'w = j w = 0, the  H a m i l t o n - J a c o b i  m a p  
def ined  by  (8.41) and  (8.42) is no t  an e l emen t  o f  Di t t (K ,  ' K ) .  
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